A unitary model of pitch perception

Ray Meddis and Lowell O'Mard

Department of Psychology, Essex University, Colchester CO4 3SQ, United Kingdom

(Received 15 March 1996; revised 22 April 1997; accepted 12 June 1997)

A model of the mechanism of residue pitch perception is revisited. It is evaluated in the context of some new empirical results, and it is proposed that the model is able to reconcile a number of differing approaches in the history of theories of pitch perception. The model consists of four sequential processing stages: peripheral frequency selectivity, within-channel half-wave rectification, and cross-channel aggregation of the output. The pitch percept is represented by the aggregated periodicity function. Using autocorrelation as the periodicity extraction method and the summary autocorrelation function (SACF) as the method for representing pitch information, it is shown that the model can simulate new experimental results that show how the quality of the pitch percept is influenced by the resolvability of the harmonic components of the stimulus complex. These include: (i) the pitch of harmonic stimuli whose components alternate in phase; (ii) the increased frequency difference limen of tones consisting of higher harmonics; and (iii) the influence of a mistuned harmonic on the pitch of the complex as a function of its harmonic number. To accommodate these paradigms, it was necessary to compare stimuli along the length of the SACF rather than relying upon the highest peak alone. These new results demonstrate that the model responds differently to complexes consisting of low and high harmonics. As a consequence, it is not necessary to postulate two separate mechanisms to explain different pitch percepts associated with resolved and unresolved harmonics. © 1997 Acoustical Society of America. [S0001-4966(97)06509-0]

PACS numbers: 43.66.Nm, 43.66.Ba, 43.66.Hg [RHD]

INTRODUCTION

The study of virtual (or low) pitch perception has a long history of controversy. Theories have typically championed either spectral (e.g., Terhardt, 1979; Goldstein, 1973) or temporal (e.g., Schouten, 1970; Licklider, 1951, 1959) explanations. Recently Houtsma and Smurzynski (1990) have shown that the pitch of stimuli consisting of high-numbered harmonics may be qualitatively different from and weaker than stimuli consisting of low-numbered harmonics. Patterson (1987) has also shown that listeners are better at detecting component phase shifts in such complexes when the harmonic numbers are higher. These and other results suggest that there may be two mechanisms for extracting pitch, one for low harmonics and one for high harmonics. Houtsma and Smurzynski (1990) give a useful discussion of this issue. Since spectral theories typically emphasize results based on low-numbered harmonics and temporal theories typically emphasize studies using high-numbered harmonics, this might be interpreted to mean that a spectral mechanism generates pitch percepts for low-frequency stimuli while a temporal mechanism generates pitch percepts for high-frequency stimuli. Carlyon and Shackleton (1994) have explicitly endorsed this view. The following investigations show, however, that both types of result can be embraced by a single model. This development offers the possibility that the traditional opposition of spectral and temporal approaches might be resolved in a single system.

We recently presented a computational model of pitch perception based on autocorrelation of the estimated probabilities of firing in groups of auditory nerve fibers (Meddis and Hewitt, 1991a, b). Although autocorrelation had been used before in this context (e.g., Licklider, 1959; Lyon, 1984), the novelty of our system lay in the use of a summary autocorrelation function (SACF) as the basis of the prediction of the pitch percepts of human listeners (see also Assmann and Summerfield, 1990). The SACF is the vector sum across all audible frequencies of the autocorrelation functions (ACF) of auditory nerve-fiber firing probabilities. The idea of summarizing temporal information across channels is a characteristic of a number of other “temporal” models (van Noorden, 1982; Moore, 1977; Patterson, 1987).

Meddis and Hewitt’s (1991a) model can be thought of as a special case of a class of a more general model consisting of four stages (see Fig. 1):

1. peripheral (mechanical) band-pass filtering,
2. half-wave rectification and low-pass filtering,
3. within-channel periodicity extraction,
4. across-channel aggregation of periodicity estimates.

Pitch decision algorithms are then applied exclusively to the results of the cross-channel aggregation in stage 4.

Meddis and Hewitt (1991a, b) used autocorrelation as one possible way of approximating the within-channel periodicity extraction stage. It was shown that the model was able to predict listeners’ performance in the following areas: pitch of the missing fundamental, ambiguous pitch, pitch shift of equally spaced inharmonic components, musical chords, repetition pitch, the pitch of interrupted noise, the existence region, and the dominance region for pitch. The model was also able to simulate a number of aspects of listeners’ sensitivity to the phase relationships among adjacent harmonic components of tone complexes. This phase sensi-
tivity was successfully demonstrated in the model using (i) amplitude-modulated and quasi-frequency-modulated stimuli, (ii) harmonic complexes with alternating phase and monotonic phase change across harmonic components, and (iii) phase effects associated with mistuned harmonics.

Such models have value in at least three different domains. First, they contribute to the development of psychological theories of the nature of pitch perception. Second, they serve as a class of computing engines acting as components of general models of auditory scene analysis (e.g., Brown and Cooke, 1994). Third, they offer a potential guide to physiological studies of the neurological mechanisms underlying pitch perception. Stages 1 and 2 of the model are consciously modeled on middle- and inner-ear functioning. Stages 3 and 4 are presumed to occur in the auditory brainstem although detailed theories of this process have yet to emerge. Our use of autocorrelation to simulate stage 3 of the model may appear unlikely as a physiological mechanism and the topic will be reviewed in the discussion.

In this report, we shall revisit the model by looking at three crucial phenomena not modeled before; (i) the pitch of alternating-phase harmonic complexes, (ii) frequency-difference limens for virtual pitch, and (iii) the effect of mistuning individual harmonics on the pitch of the whole complex. The phenomena are crucial in the sense that they could be used to justify dual (temporal/spectral) mechanisms of pitch perception. The presentation will emphasize an emergent property of the model whereby it responds to resolved and unresolved harmonics in a qualitatively different way without the need to postulate additional mechanisms.

I. MODEL DESCRIPTION

Full details of the model are given in Meddis and Hewitt (1991a). It has not been altered in any substantial way. Some details of the implementation of the individual stages are given below and a list of all parameters is given in the appendix. The model was implemented using version 1.9.2 of the LUTEar computational library. An example of the output of the model is given in Fig. 2 showing the ACFs and the SACF in response to a 100-Hz fundamental tone consisting of groups of low- and high-numbered harmonics. The model was evaluated using a sampling interval of 50 μs. All parameters are summarized in the Appendix.

Stimulus generation. The stimuli used were approximately 100 ms long with an onset (raised sine) ramp of 2.5 ms. The stimulus duration was always adjusted to be an integer multiple of the period of the signal. This is because the SACF pulsates in synchrony with the stimulus and the snapshot is best taken at a fixed point in the cycle. All tone components were harmonic and presented at 60 dB SPL unless otherwise stated.

Pre-emphasis filter. This filter is a simplified representation of the pressure gain of the middle ear. It is implemented using a second-order band-pass filter with skirts down by 3 dB at 450 and 8500 Hz.

Band-pass filters (stage 1). A bank of 60 linear fourth-order gammatone filters (Patterson et al., 1992) was used to represent the mechanical frequency selectivity of the cochlea. Filter center frequencies were equally spaced on a log scale between 100 and 8000 Hz. The bandwidths of the filters were chosen using the formula suggested by Glasberg and Moore (1990).

Hair cell (stage 2). The output from each filter was passed to an inner hair cell model (Meddis, 1986, 1988), representing mechanical to neural transduction. [The parameters are the same as those given in Meddis et al. (1990) except for parameters A and B which were changed to 100 and 6000, respectively, to accommodate a change from arbitrary units to units of pressure, μPascals.] The output from the simulated hair cell was in the form of a continuously changing probability of an action potential, p(t), in a post-synaptic auditory nerve fiber. The output from the hair cell stage is characterized by an ac and a dc component. The ac component has the same frequency as the signal but is increasingly attenuated above 1 kHz. The dc component is a saturating monotonic function of signal level. Refractory effects were not modeled.

Periodicity detection (stage 3). A running autocorrelation function was computed in each channel based on the firing probabilities. The reported SACF is a “snapshot” of the function at the time of the cessation of the stimulus. More strictly, the function is the running cross product of the probabilities at a lag t:

$$h(t, l, k) = \frac{1}{T} \sum_{\tau=1}^{\infty} p(t-T, k)(t-T-l, k)e^{-\frac{t-T}{\tau}} dt, \quad (1)$$

where h(t, l, k) is the ACF at lag l, time t, in channel k, T = dt, τ is the time constant (normally 10 ms), and dt is the sampling interval.

Cross-channel summation (stage 4). All ACFs were summed with equal weight to create the SACF s(t, l),

$$s(t, l) = \sum_{k=1}^{N} h(t, l, k), \quad (2)$$

where N is the number of channels used.
Pitch matching is implemented by generating the SACF for two tones and computing the squared Euclidean distance, D^2, between the two SACFs $\tilde{s}(t,l)$ and $s'(t,l)$.

$$D^2 = \sum_{i=a}^{b} [s(t,l) - s'(t,l)]^2,$$

where $l = i \cdot dt$, and a,b defines the range of lags used in the comparison. Full details of this procedure are given in Meddis and Hewitt (1991b). A small D^2 indicates that the two stimuli are similar while a large D^2 indicates dissimilarity.

D^2 is measured over a limited segment of the SACF $(a.dt, b.dt)$ and the limits of this segment are explicitly specified on each relevant occasion in the text. The segment typically covers only those lags which might reasonably influence the pitch judgments, i.e., whose reciprocals represent frequencies at which virtual pitch can be heard. As a general rule, the qualitative effects to be described can be observed using a wide range of different segment lengths, so long as they include lags corresponding to the pitch period. To verify this effect, the model is routinely checked by using a different SACF ranges.

Threshold judgments are simulated in a relative sense by establishing D^2 between a test stimulus and a comparison stimulus that differs by a fixed percentage along the dimension of interest (fundamental frequency or frequency of a mistuned harmonic). If the distance measure is greater in one situation than another then the former is judged to be more discriminable and to indicate a lower threshold (see below).
The test and comparison stimuli are chosen as typical of a threshold difference for human listeners. An alternative method used below is to define a reasonable criterion value of D^2 and then to vary the fundamental frequency until this is matched. Both methods are illustrated.

In the case of pitch matching, D^2 is computed between the test stimulus and a number of candidate comparison stimuli to be described below. The best match is taken to be the comparison stimulus yielding the lowest value for D^2.

The computer code and the associated parameter files for running the model are available from the authors.

II. EVALUATION OF THE MODEL

A. Pitch of alternating phase harmonics

Carlyon and Shackleton (1994) presented listeners with harmonic complexes whose component harmonics were either in sine phase or alternating phase ($\sin/\cos/\sin/\cos\ldots$). An alternating-phase stimulus is sometimes reported as having a pitch an octave above that of its corresponding sine-phase stimulus. It can be seen in Fig. 3 that the stimulus envelope changes when the phases are alternated; the period of the envelope is only half as long. If the pitch of an alternating-phase stimulus is reported to be double that of the corresponding sine-phase stimulus, the observation could be used as evidence in favor of models of pitch extraction which depend upon the period of the envelope (temporal theories). Spectral theories, on the other hand, cannot easily explain the rise in pitch because the spectral components of the stimulus have not changed.

Carlyon and Shackleton (1994) reported that the pitch appears to double for alternating-phase stimuli when they are restricted to a small number of high harmonics. On the other hand, if the stimuli are restricted to a small number of low harmonics, the effect disappears and both sine-phase and alternating-phase stimuli are reported as having the same pitch. The results appear to imply that two different pitch mechanisms are at work; one (phase insensitive) for low harmonics and the other (phase sensitive) for high harmonics. High-harmonic stimuli generate percepts consistent with temporal theories while low-harmonic stimuli generate percepts consistent with spectral theories.

By varying the fundamental frequency and the range of harmonics used in a stimulus, Carlyon and Shackleton (1994) were able to show that the critical variable was probably not the frequency of the harmonics but their “resolvability.” When harmonic components are well spaced relative to the width of auditory filters (Patterson and Moore, 1986), there is relatively little interaction of adjacent harmonics within a single filter and the components are said to be “resolved.” This result might be used to support a more specific argument that percepts based on resolved harmonics may be best accounted for using spectral theories, while percepts based on unresolved harmonics may be best accounted for using temporal theories.

The following demonstration shows that our original model can simulate the effect without further modification. To do this we used stimuli similar to those of Carlyon and Shackleton by creating alternating-phase stimuli using only harmonics in limited-width frequency bands. The SACF for this alternating-phase stimulus was then compared with the SACFs for two similar stimuli whose harmonics were in sine phase; one with the same F_0 and one with F_0 set an octave higher.

The test stimulus was composed of harmonics in alternating phase with an F_0 of 150 Hz. The two comparison stimuli were composed of harmonics in sine phase with F_0 150 Hz and F_0 300 Hz, respectively. The test was repeated three times using:

1. only LOW harmonics (range 125–625 Hz),
2. only MID harmonics (range 1375–1875 Hz), and
3. only HIGH harmonics (range 3900–5400 Hz).

The stimuli were generated using a signal consisting of 80 harmonics of the fundamental, digitally filtered using a Butterworth filter set to give skirts of 24 dB per octave. The range was used to specify the 3 dB down points of the filter.

The task is to find the best match between the test stimu-
lus (alternating phase) and either the 150-Hz or the 300-Hz comparison stimulus (sine phase). The SACFs for all nine stimuli are shown in Fig. 4, where the comparison can be made visually.

When LOW harmonics are used, the SACF of the alternating-phase 150-Hz test stimulus is indistinguishable from that of the 150-Hz sine-phase comparison stimulus. When HIGH harmonics are used, the SACF of the alternating-phase 150-Hz test stimulus generates a distinct extra peak that is missing from the sine-phase version. This makes it more similar to the SACF of the 300-Hz sine-phase comparison stimulus (bottom row). The model, therefore, predicts that a 150-Hz alternating-phase stimulus will be matched with 300-Hz sine-phase comparison stimulus when HIGH harmonics are used but not when LOW harmonics are used. This is essentially the same result as that reported by Carlyon and Shackleton (1994).

An explanation of the model’s behavior can be inferred from the differences among the ACFs in Fig. 2. Figure 2(a) and (b) shows the ACFs and SACF for LOW and HIGH harmonics in sine phase with a fundamental frequency of 100 Hz. Contrast these figures with those given in Fig. 2(c) and (d) which is based on stimuli that are identical in all respects except that the components are in alternating phase. For LOW harmonics, the ACFs are indistinguishable between sine and alternating phase [2(a) and (c)]. This is because the harmonics are resolved by the filters so that the input to the individual ACFs are approximately pure tones. The ACF of a pure tone is not affected by the phase of the tone. As a consequence, changing the phase of components that are resolved by the filter bank has no effect on the pattern of ACFs and, by implication, has no effect on the percept. In the case of HIGH harmonics, on the other hand, the ACFs are different in the two corresponding figures [2(b) and (d)]. For example, the pronounced dip at a lag of 3.3 ms for sine-phase stimuli is replaced by a distinct peak for cosine-phase stimuli. This occurs because the filters no longer resolve individual components. The within-channel waveform for multi-component signals is, therefore, strongly affected by the phase relationships of the interacting components. Autocorrelation is strongly affected by changes in shape of the waveform and this is reflected in the ACFs which predict that relative phase will be perceptually relevant when the components are unresolved (see also Patterson, 1987).

We may conclude from this demonstration that the model’s behavior is consistent with the reports of listeners. Furthermore, it is not necessary to postulate two separate mechanisms to explain different percepts for resolved and unresolved harmonics when presented in alternating phase. It is a property of the four-stage model that it will respond differently to these two types of stimulus without further amendment.

The differences between the SACFs for the two stimuli are manifest along the length of the SACF and cannot be characterized simply in terms of a shift in the main peak in the SACF. When modeling the results of a number of psychophysical pitch studies, the location of the main peak in the SACF was used with some success as a predictor of pitch judgments (Meddis and Hewitt, 1991a). When modeling sensitivity to differences in phase relationships among harmonic components, comparisons along the length of the SACFs of the two stimuli were used (Meddis and Hewitt, 1991b). The latter procedure is a more general version of the former and probably a more secure approach. In the remaining evaluations of the model, comparisons will be made along substantial segments of the SACF.

B. Pitch discrimination

Houtsma and Smurzynski (1990) showed that the frequency difference limen for the pitch of an 11 component harmonic complex increased with the number of the lowest harmonic in the complex. Carlyon and Shackleton (1994) found that this is a function of the resolvability of constituent harmonics. We explored this issue by testing the model using Carlyon and Shackleton’s (1994) paradigm. We used stimuli with harmonic complexes containing either resolved (LOW, from 125 to 625 Hz) or unresolved (HIGH, from 3900 to 5400 Hz) harmonics. Comparisons were made between tones with FO’s of 100 and 102 Hz. If the model is to simulate Carlyon and Shackleton’s result we expect the 2% shift to produce a bigger change in the SACF when using low harmonics than when using high harmonics. To test this we calculated D^2 between the SACFs for the 100-Hz and the 102-Hz tones. The stimuli were generated using a signal consisting of 80 harmonics of the fundamental digitally filtered using a Butterworth filter set to give skirts of 24 dB per octave. The range was used to specify the 3 dB down points of the filter. The SACF was calculated after 10 complete cycles of the stimulus.

The SACFs for the LOW and HIGH harmonic stimuli are given in Fig. 5(a) and (c). The SACFs are very different in shape for the resolved (LOW) and unresolved (HIGH)
harmonics. The LOW stimulus has a narrow peak at a lag of 10 ms corresponding to a 100-Hz pitch percept. The HIGH stimulus has a broad and shallow peak at the same value. A 2% shift in F_0 creates very different effects for the two stimuli. For the LOW stimulus, a clear difference can be seen between the 100- and 102-Hz SACFs. For the HIGH stimulus, the difference is much less clear. Figure 5(a) and (b) shows the corresponding difference functions. The LOW stimulus produces a larger difference function when the pitch is shifted by 2%. Using the SACF range 80–1000 Hz, D^2 was more than three times as great for LOW (0.37) than for HIGH (0.11) harmonics confirming our expectations. D^2 was calculated here using a wide segment of the SACF (80–1000 Hz).

To demonstrate the generality and lawfulness of the effect, the above calculations were extended to include additional examples using a fundamental frequency of 200 Hz and two additional intermediate ranges of harmonics were studied. The four ranges are as follows: LOW (125–625 Hz), MID (1375–1875 Hz), MID/HIGH (2500–3500 Hz), and HIGH (3900–5400 Hz). Figure 6(a) shows the Euclidean distance for a 2% shift in F_0 for all four harmonic ranges using two fundamental frequencies (100 and 250 Hz).

A large value of D^2 implies a high discriminability of the two signals and therefore our D^2 measure can be said to be loosely analogous to the d' statistic used in signal detection theory and employed by Carlyon and Shackleton. Our calculations based on the model are therefore qualitatively similar to their results (1994, Fig. 6) which show a deterioration in discriminability from LOW to HIGH ranges of harmonics.

Houtsma and Smurzynski (1990) measured frequency-difference limens using 11-component harmonic stimuli. They found an increase in threshold as the number of the lowest harmonic was raised from 7 to 19 for a 200-Hz fundamental. Their paradigm was simulated using an 80 harmonic stimulus band-pass filtered as described above; the lower and upper 3 dB down point of the filter were set to the

nth and the $(n+11)$th harmonic. Figure 6(b) shows D^2 as a function of ΔF_0 for different ranges of harmonics. Stimuli with low harmonic number show steeper slopes than those with high harmonic number. The Euclidean distance calcu-
The pattern was similar. Additionally by setting a criterion value for D^2 on the SACF than when resolved harmonics are used.

A value of $D^2 = 0.042$ was chosen to give thresholds similar to listeners and the model thresholds are shown in Fig. 6(c). These show the expected upward trend but do not replicate the leveling out observed by Houtsma and Smurzinski for the highest range of harmonics. The four-stage model generates shallower, less distinctive SACFs for stimuli with unresolved components. As a result small changes in F_0 have less effect on the SACF than when resolved harmonics are used.

C. The pitch of a complex tone with a mistuned harmonic

If one component of a harmonic complex is mistuned slightly, it gives rise to a shift in the pitch of the whole complex (e.g., Moore et al., 1985). This effect is typically maximal for a 3%--4% mistuning of a low-numbered harmonic. The pitch shift can be as great as 1%. Darwin et al. (1994) have recently presented some highly detailed results for a harmonic stimulus with a fundamental frequency of 155 Hz. The behavior of the model is first illustrated using their paradigm.

To simulate Darwin et al.’s procedure, the SACFs were calculated for 10-component harmonic test tones of 100-ms duration with an F_0 of 155 Hz and the fourth harmonic mistuned to a varying degree. To establish the best pitch match we also calculated the SACFs of a range of comparison 10-component harmonic tones, with F_0 ranging between 155 and 156 Hz in steps of 0.1 Hz. For each test stimulus with a mistuned harmonic, the Euclidean distance was computed between its SACF and the SACFs of all comparison stimuli across the lag range corresponding to $F_0 \pm 10\%$ (140–170 Hz). The comparison stimulus yielding the lowest value of D^2 was judged to be the best match.

Figure 7 summarizes these results by showing the frequency of the best pitch match as a function of the degree of mistuning of the fourth harmonic and compares it with data from Darwin et al. (1994). Figure 7 also shows the results of repeating the same process using different lag ranges along the SACF. Changing the lag range causes quantitative changes but leaves the qualitative results intact. The biggest pitch shifts were obtained using a lag range of 5.9–7.1 ms ($1/F_0 \pm 10\%$). This range will be used for the rest of this section. Darwin et al. obtained pitch matches of 155.2 Hz for no mistuning (when the fourth harmonic is 620 Hz). This represents a small bias of 0.2 Hz in the listeners’ results. Allowing for this bias, the model results and the real data are in close agreement for the first three points.

When mistuning increases beyond 3%, the listeners’ pitch matches decline in frequency while the model’s pitch matches continue to rise in frequency. This may be attributable to an additional attentional mechanism beyond the scope of this study. As mistuning increases, listeners normally report that the mistuned harmonic can be heard as a separate entity. It is likely that this process of “hearing out” a mistuned component is accompanied by a weakening of the contribution of that component to the pitch percept (Darwin, 1992). We shall not pursue this mechanism further beyond noting that we have experimented elsewhere with a model for segregating sounds using pitch to guide the process (Meddis and Hewitt, 1992).

The return of the model’s best match predictions to baseline levels when the mistuned harmonic is set to 700 Hz is a consequence of the fact that a mistuning of 700 Hz is both an upward mistuning of a fourth harmonic or an equal downward mistuning of a fifth harmonic; leading to a canceling of the effect.

D. The dominance of individual harmonics

Moore et al. (1985) explored the magnitude of the pitch shift following the mistuning of the first to the sixth harmonic. The results were variable across subjects but it was possible to conclude that mistuning the second harmonic by 3% had the greatest effect on the pitch of the complex for F_0 of 100, 200, and 400 Hz [Fig. 8(b)]. The higher the harmonic (above the second) the less its influence. By contrast, the first harmonic was more influential at higher fundamental frequencies. We, therefore, extended the above evaluation to study the effect of mistuning the first to the sixth harmonics.

To avoid complications related to the “hearing out” phenomena discussed above, the evaluation is confined to 3% mistunings. The resulting pitch shifts are given in Fig. 8(a). The results were obtained using signal durations that were a complete number of cycles of the fundamental and close to 100 ms. D^2 calculations were based on lag ranges corresponding to $1/F_0 \pm 10\%$.

While the observed shifts are quantitatively lower than Moore et al.’s results, the key characteristics of Moore et al.’s data are reproduced by the model. Mistuning the first harmonic has very little influence on the pitch of the complex with an F_0 of 100 Hz but is increasingly influential at higher fundamental frequencies. The second harmonic is very influential for all three fundamental frequencies. Finally, the higher the harmonic (above the second) the less its influence on pitch.
It is difficult to explain the discrepancy in size between the results of Moore et al. and the model output. The model’s results are consistent with those of Darwin et al. who also produce smaller pitch shifts than Moore et al. for corresponding stimuli. The very small pitch shifts found for the model when the first harmonic was mistuned are not untypical of the empirical results for an \(F_0 \) of 100 Hz. We speculated that this might arise from the action of the model’s pre-emphasis function which attenuates low-frequency components. However, when this was switched off, the effect remained intact.

Moore et al. (1985) explained their experimental results in terms of the principle of a “dominance region.” Ritsma’s (1967, 1970) studies had earlier indicated that the third, fourth, and fifth harmonics made a dominant contribution to the pitch of a complex tone. Plomp (1967) suggested that the number of the dominant harmonic declined as the fundamental frequency increased. The model’s behavior is consistent with Ritsma’s dominance region except that we need to include the second harmonic in this region. Plomp’s ideas are also represented in the model results; the third harmonic is dominant when \(F_0 \) is 100 Hz but the second harmonic is dominant at higher pitches. Similarly, the center of gravity of the three histograms moves toward lower harmonics as the pitch increases in both the model behavior and in the results of Moore et al.

The results in Fig. 8 were based on calculations using a lag range corresponding to frequencies within \(\pm 10\% \) of \(F_0 \). Additional calculations were made using a lag range corresponding to 80–1000 Hz. This resulted in some quantitative changes but the overall pattern of results and the conclusions that could be drawn were unchanged.

A careful examination of the model’s operation leads to the suggestion that a number of principles interact to produce the dominance phenomenon. According to the model, the pitch sensation arises through the summation of the ACFs of the output of a bank of filters. At low frequencies each tone emerges from its corresponding filters as an unmodulated pure tone (at least for the fundamental frequencies studied here). The ACF of a pure tone can be represented as the cosine function. Low-frequency harmonics will have wider ACF peaks that will contribute more diffusely to the estimate of the most commonly occurring periodicity. According to this argument, higher-frequency harmonics should contribute more narrowly to the estimate and mistuning should disturb the pitch percept more. However, a second principle holds the first in check. As the frequency of the harmonic increases, the filtering which occurs at the level of the receptor potential reduces the ac component of its output. This reduces the amplitude of the cosine ACF and the extent of its contribution to the pitch percept. In Fig. 2 the peak-to-trough height of the ACFs can be seen to decrease in size with increasing filter center frequency. These two principles should produce an optimal harmonic number with reduced contributions from harmonics with higher and lower frequencies. This is certainly consistent with the results shown in Fig. 8. Because the channels are distributed on a logarithmic scale of frequency, high-frequency components are represented by a smaller number of channels and make a reduced contribution to the SACF. At the other end of the scale, the pre-emphasis of the outer and middle ear has the effect of reducing the amplitude of very low-frequency signals relative to middle-range frequencies above 1 kHz. While not critical to the principle of dominance, this latter effect will have some influence on the relative weights of stimulus components.

The principle of dominance, in the model at least, emerges from a set of no fewer than four subsidiary principles. It is doubtful whether the model is able to represent each effect accurately and, in any case, each principle will be subject to considerable individual differences in the real world.

III. DISCUSSION

These results extend the range of successful predictions made by the four-stage periodicity model. In particular, these results are consistent with the view, strongly supported by recent research, that the pitch percept based on resolved harmonics will behave differently from that based on unresolved harmonics. A principle emerges that resolved har-
monics exercise a potent influence on the pitch percept but their relative phases do not influence the percept. By contrast, unresolved harmonics make a weaker contribution to the percept but their relative phases are perceptually salient. The ability of our model to simulate qualitative aspects of these phenomena suggest that it may not be necessary to posit two distinct mechanisms of pitch extraction.

The four-stage model represents a general approach to pitch extraction. Our particular implementation is only one of a number of alternatives. The use of linear gammatone filters to simulate peripheral mechanical filtering and the hair cell model to represent the half-wave rectification and low-pass filtering are both open to improvement. Similarly, the use of autocorrelation for the periodicity stage of the model may seem an unlikely choice if the process is considered to represent some physiological process. It is likely, however, that many alternative algorithms sensitive to periodicity could be substituted here without prejudice to the operation of the model. The final summation stage is also open to further study; the method used here is the simplest we could devise. Finally, our method of pitch matching by using the Euclidean distance between an arbitrarily long segment of the SACF is undoubtedly open to further development as the model is challenged by new data. At present, it remains unclear which segment of the SACF should be used for predicting pitch judgments. It is the basic four-stage nature of the model which is critical to our explanation of pitch rather than any specific implementation.

The ability of the system to detect periodicity appears to be limited to relatively long periods. This means that the system cannot extract information from the fine structure of the input waveform in the high-frequency channels. However, usable periodicity information is still available in amplitude modulation of the envelope of the output of high-frequency filters. It is, therefore, a matter of expediency that the signal be reduced to its envelope by half-wave rectification and low-pass filtering (stage ii). The low frequency characteristics of the envelope can then be processed by the periodicity detection system. A similar phenomenon can be observed in relation to our sensitivity to interaural time differences (ITDs) in continuous signals. At low signal frequencies these can be detected in the ITDs of the fine structure but at high frequencies this sensitivity is restricted to ITDs in the envelope of the signal (Henning, 1974).

In these two respects, the model can be seen to come close to making sense of Carlyon and Shackleton’s (1994) proposal that there are two distinct pitch extraction mechanisms. High-frequency, unresolved harmonic components interact with each other and are stripped of fine structure information so that pitch judgments must be made on the basis of the signal envelope. Low-frequency, resolved harmonics do not interact and have no useful envelope information. The HIGH and LOW sets of components give rise to distinctly different SACF shapes (see Fig. 4); the former contribute to a shallow diffuse peak while the latter support narrower and higher peaks. This observation is consistent with their assertion that frequency-difference limens are exceptionally high when the comparison stimulus consists of high harmonics and the test stimulus consists of low harmonics; in terms of SACFs, we are not comparing like with like. It is doubtful, however, that this amounts to two distinct mechanisms.

Pitch matching and difference threshold phenomena have been simulated in this study using comparisons along whole segments of the SACF. An alternative approach is to measure the location of the highest peak and look for differences in location between the two stimuli. In early (unpublished) tests we found this method to require an unreasonably high degree of resolution for the SACF. However, in Fig. 5(b) it can be clearly seen that the large differences between the two SACFs occur to the left and right of the main peak. The sensitivity of our method depends on including these parts of the SACF in our difference measure.

Despite its predictive power, autocorrelation is unlikely to be the method used by the nervous system to detect periodicity. Physiological studies have, however, shown that a number of different cell types in the cochlear nucleus act as band-pass AM amplifiers (Moller, 1976; Frisina et al., 1990a, b; Kim et al., 1990; Rhode, 1995; Hewitt and Meddis, 1994). These units can also phase lock to low-frequency pure tones. These two properties make it likely that they may be involved in the periodicity detection process. Some cells in the central nucleus of the inferior colliculus show an enhanced rate of firing to restricted ranges of frequencies of amplitude modulation (Langner, 1992; Rees and Palmer, 1989). It is possible, but not yet proven, that each cell of this type corresponds to a single point in our autocorrelation function. While it remains to be established that the correspondence is valid, it is important to stress that autocorrelation is merely substituting pro tem for the periodicity detector until the most appropriate physiological mechanism can be determined.

Our proposal falls short of a general theory of pitch. It does not, for example, address the issues of pitch variation with sound-pressure level, octave enlargement, and interaural pitch differences. Nor have we attempted to accommodate the phenomena of binaural pitch perception (Houtsma and Goldstein, 1972; Beerends and Houtsma, 1989; Cramer and Huggins, 1958). Similarly, it has not been possible to address Hartmann’s (1994a, b) suggestion that inharmonicity is detected locally among adjacent harmonics and cannot be detected if adjacent harmonics are missing.

ACKNOWLEDGMENTS

This research was supported by a grant from the Image Interpretation Initiative of the Science and Engineering Research Council, UK (GR/H52634). We are grateful to B. C. J. Moore, C. J. Darwin, E. Lopez-Poveda, and two anonymous reviewers for useful comments on an earlier version of this manuscript.

APPENDIX: PARAMETERS USED IN THE EVALUATION OF THE MODEL

Signal parameters
1.00E−01 Stimulus signal duration (seconds)—variable.
5.00E−05 Stimulus sampling interval, dt (seconds).
2.500E−03 Ramp up rise time for signal (seconds).
Pre-emphasis filter
2 Filter order.
Autocorrelation parameters

50,000.0 Firing rate scalar

Frisina, R. D., Smith, R. L., and Chamberlain, S. C.

Hartmann, W. M.

Glasberg, B. R., and Moore, B. C. J.

Henning, G. B.

Kim, D. O., Siriani, J. G., and Chang, S. O.

